Consistency-preserving attribute reduction in fuzzy rough set framework
نویسندگان
چکیده
Attribute reduction (feature selection) has become an important challenge in areas of pattern recognition, machine learning, data mining and knowledge discovery. Based on attribute reduction, one can extract fuzzy decision rules from a fuzzy decision table. As consistency is one of several criteria for evaluating the decision performance of a decision-rule set, in this paper, we devote to present a consistency-preserving attribute reduction in fuzzy rough set framework. Through constructing the membership function of an object, we first introduce a consistency measure to assess the consistencies of a fuzzy target set and a fuzzy decision table, which underlies a foundation for attribute reduction algorithm. Then, we derive two attribute significance measures based on the proposed consistency measure and design a forward greedy algorithm (ARBC) for attribute reduction from both numerical and nominal data sets. Numerical experiments show the validity of the proposed algorithm from search strategy and heuristic function in the meaning of consistency. Number of the selected features is the least for a given threshold of consistency measure.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملFeature Selection with Fuzzy Decision Reducts
In this paper, within the context of fuzzy rough set theory, we generalize the classical rough set framework for data-based attribute selection and reduction, based on the notion of fuzzy decision reducts. Experimental analysis confirms the potential of the approach.
متن کاملFuzzy-Rough set Approach to Attribute Reduction
Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.
متن کاملInformation-preserving hybrid data reduction based on fuzzy-rough techniques
Data reduction plays an important role in machine learning and pattern recognition with a high-dimensional data. In real-world applications data usually exists with hybrid formats, and a unified data reducing technique for hybrid data is desirable. In this paper, an information measure is proposed to computing discernibility power of a crisp equivalence relation or a fuzzy one, which is the key...
متن کاملWater Quality Assessment in the Harbin Reach of the Songhuajiang River (China) Based on a Fuzzy Rough Set and an Attribute Recognition Theoretical Model
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Machine Learning & Cybernetics
دوره 4 شماره
صفحات -
تاریخ انتشار 2013